

Matching industrial energy demand with renewables

Switching from annual to hourly

Jonas Verstraeten
Co-founder
+32477195282
jonas.verstraeten@companion.energy

Thomas Vyncke
Co-founder
+32495589556
thomas.vyncke@companion.energy

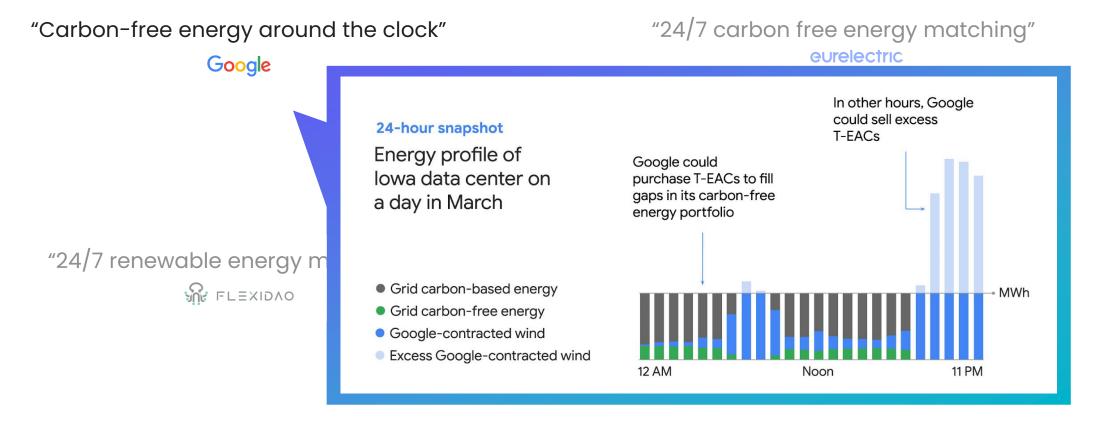
Companion. energy

What's in a name? – Prepare for a Buzzword Bingo

"Carbon-free energy around the clock"

Google

"24/7 carbon free energy matching"


eurelectric

"24/7 renewable energy matching"

"The 100/100/0 goal"

| Microsoft

What's in a name? – Prepare for a Buzzword Bingo

So, the concept is easy...

From

Offsetting Christmas Eve electricity consumption with summertime solar PV generation.

= 100% renewable

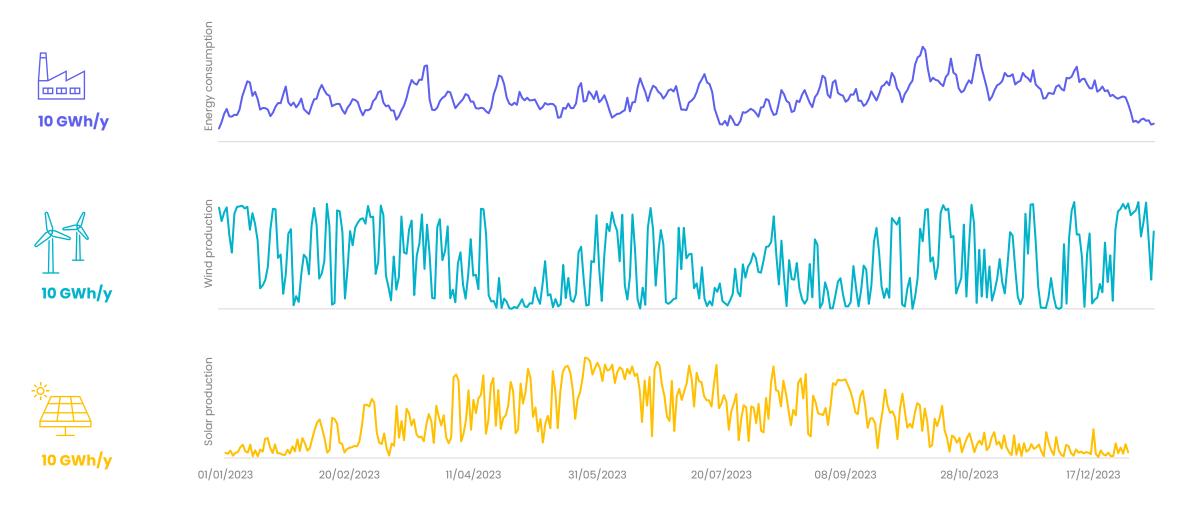
So, the concept is easy...

From

To

Offsetting Christmas Eve electricity consumption with summertime solar PV generation.

= 100% renewable



Offsetting Christmas Eve electricity consumption with summertime solar PV generation.

= 0% renewable

The reality not so much – Let's quiz!

The reality not so much – Let's quiz!

Scenario	Old-school	Future	-proof
	Annual	Hourly	15min
Consumption	0%	0%	0%
Consumption + 100% PV	100%	A ? %	
Consumption + 100% Wind	100%		
Consumption + 50% PV + 50% Wind	100%		
Consumption + 50% PV + 50% Wind + 1 MWh BESS	100%		
Consumption + 50% PV + 50% Wind + 5 MWh BESS	100%	B ?%	

The reality not so much – Let's quiz!

Scenario	Old-school	Future	-proof
	Annual	Hourly	15min
Consumption	0%	0%	0%
Consumption + 100% PV	100%	A 37%	33%
Consumption + 100% Wind	100%	62%	59%
Consumption + 50% PV + 50% Wind	100%	64%	61%
Consumption + 50% PV + 50% Wind + 1 MWh BESS	100%	68%	64%
Consumption + 50% PV + 50% Wind + 5 MWh BESS	100%	B 75%	71%

Why move? Plenty of benefits.

Environme	ental Reduces emissions and promotes renewable energy	
Economic	Drives cost savings while mitigating energy price volatility risks	
Innovation	n Prepares you for data-driven energy management	
Regulatory	Meets evolving regulatory requirements (license-to-operate!)	
Reputation	n Enhances brand image and strengthens stakeholder relations	

Why move? Plenty of benefits.

Environmental	Reduces emissions and promotes renewable energy	
Economic	Drives cost savings while mitigating energy price volatility risks	
Innovation	Prepares you for data-driven energy management	
Regulatory	Meets evolving regulatory requirements (license-to-operate!)	
Reputation	Enhances brand image and strengthens stakeholder relations	
Commercial	Builds a competitive differentiator in many value chains	

How to move?

How to move?

Assessment and Planning

Collaboration

Renewables Sourcing Smart Management and Flexibility

Storage

EPRS | European Parliamentary Research Service

Putting in place a policy where renewable energy can be sourced from the grid requires taking the following criteria into consideration:

- origin (additionality): Use of the existing grid mix, or requirement to build 'additional' renewable electricity capacity;
- temporal correlation (simultaneity): the time frame when the generation of renewable electricity and its use for electrolysis are balanced. This can vary from a 15-minute interval to an annual level;
- geographical correlation: The electrolyser and the renewable power plant can either be in the same location, the same bidding zone (usually one country) or in a completely different area. Issues such as electricity grid congestion can be taken into account.

Note: not only timing matters

Characteristics Google

>20TWh

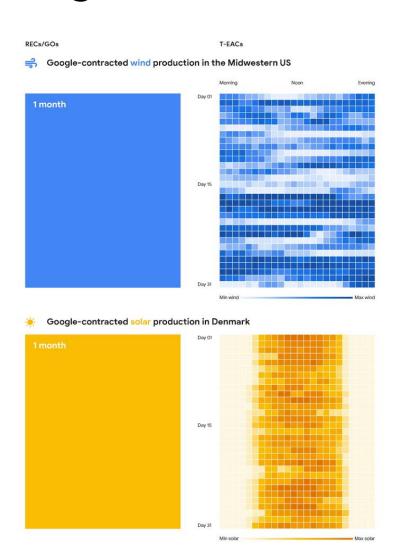
Electricity consumption mainly from data centres

>10GW

Renewable electricity production capacity contracted

Software-based

Tools to:

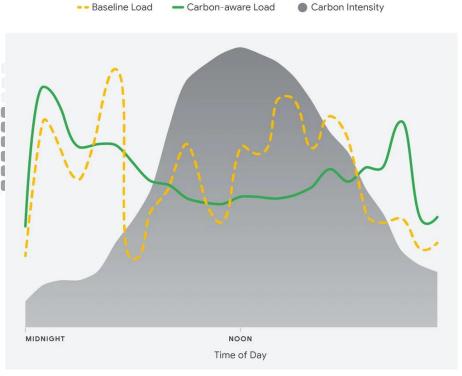

- Purchase renewable energy efficiently
- Pro-actively steer data centre demand
- Track 24/7 compliance

Collaborative

Working with energy providers, software start-/scale-ups, even competitors.

A smarter way to buy clean energy

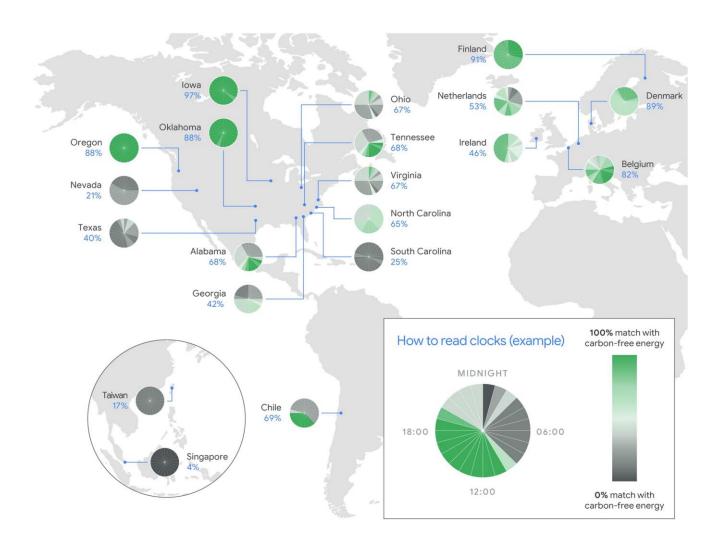
September 12, 2023

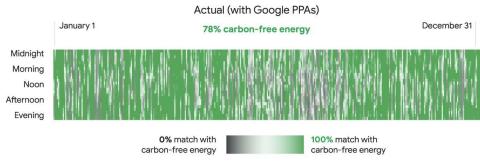


Conventional compute load

Execution of compute tasks throughout the day, regardless of carbon impact

MIDNIGHT MORNING NOON AFTERNOON

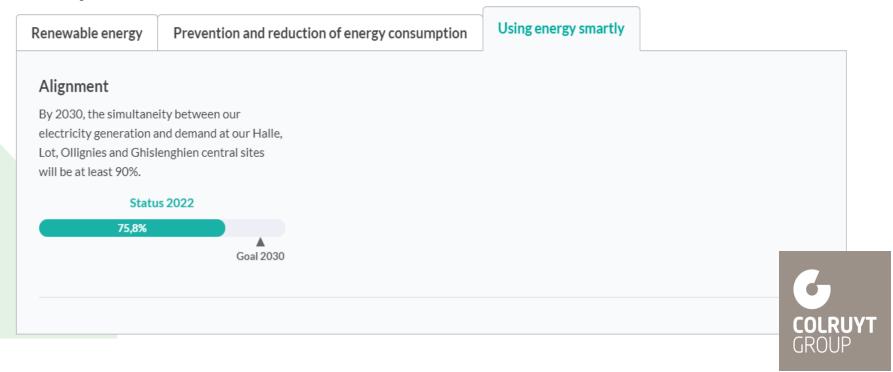

Baseline versus Carbon-aware Load


Monitoring

Big Tech is at the forefront.

Carbon Heat Map: every hour of electricity use at lowa data center in 2019

Carbon Heat Maps enable us to visualize each hour of the year and determine how clean our hourly electricity consumption is as we work towards 24/7 carbon-free energy.



198

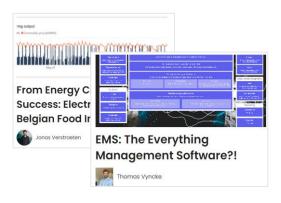
Others begin to take significant steps.

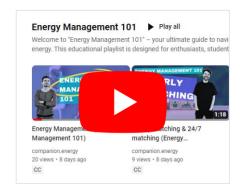
Our objectives and initiatives

Monitoring

Our customers too.

Renewables heat map ③




Hungry for more?

Next webinars

- Industrial Electrification: From Barriers to Breakthroughs with Jan Rosenow (LinkedIn top voice) – April 18th
- Powering the EV-centric future: Renewable, Reliable, and Flexible with Irma Stegmann (Equans) – May 6th

Can't wait?

Companion. energy

